312 research outputs found

    21st Century hydrological modeling for optimizing ancient water harvesting techniques

    Get PDF
    In order to increase dryland productivity, water harvesting techniques (WHT) have received renewed attention, leading to their massive implementation in marginal drylands. However, versatile tools to evaluate their efficiency under a wide range of conditions are often lacking. For two case studies in the arid and semi-arid central-northern zone of Chile, a fully coupled 3D surface-subsurface hydrological model based on the Richards’ and the Saint Venant equations was used to evaluate and improve existing water harvesting techniques using infiltration trenches (locally called ‘zanjas’). The model was parameterized with detailed runoff and soil-water content data collected during simulated rainfall from a 6 x 2 m experimental plot including a catchment area and infiltration trench at the arid site. Using seven responsive parameters identified by a global sensitivity analysis, surface and subsurface flow processes were calibrated simultaneously. The calibrated model accurately reproduced observed soil moisture contents (R2 0.92) and runoff amounts (R2 0.97), and represented the overflowing infiltration trench, which is a clear improvement over existing frameworks. A comparative analysis with a natural slope demonstrated that the trench was efficient in capturing runoff under high rainfall intensities, such as the one simulated, resulting in a significant decrease (46%) of runoff. However, when extended to natural rainfall seasons, runoff water harvesting was insufficient in dry, normal and wet years, while only under very wet conditions 55% of the potential runoff was effectively harvested and stored in the soil profile. As such, this test case shows the importance of correct water harvesting design to become an effective tool in dryland management, taking both soil physical and climatic constraints into account. The model was further tested on a much larger scale of two ca. 3 ha large watersheds at the semi-arid site, one with infiltration trenches and one without. Good agreement was observed between measured and simulated runoff at the watershed outlet

    The 25 November 1988 Saguenay, Quebec, Earthquake: Source Parameters and the Attenuation of Strong Ground Motion

    Get PDF
    The Saguenay earthquake of 25 November 1988 occurred close to the southern margin of the Saguenay Graben in southern Quebec. It was caused by almost purely dip-slip faulting centered at a depth of 26 km with a P axis oriented northeast-southwest. This faulting mechanism is similar to those of the larger historical earthquakes in eastern North America, but the focal depth is substantially greater than all but one of these events. The seismic moment estimated from regional PnI waves and teleseismic long-period body waves is 5 × 10^(24) dyne-cm., corresponding to a moment magnitude of 5.8. The source duration of the earthquake is estimated to be 1.8 sec, corresponding to a stress drop of 160 bars, which is not significantly higher than the average stress drop of 120 bars estimated from previous large earthquakes in eastern North America. In order to simultaneously match the recorded ground motion amplitudes of strong-motion acceleration, strong-motion velocity, and teleseismic short-period and long-period body waves, it is necessary to use a source function having a complex shape that implies the presence of asperities and larger local stress drops. The large set of strong-motion recordings of the Saguenay earthquake has been used to validate a procedure for estimating strong ground motion attenuation based on a simple wave propagation model. The most important feature of the recorded strong motions is that their peak amplitudes do not decay significantly with distance inside 120 km, but then decay abruptly beyond 120 km. Profiles of recorded accelerograms with absolute times indicate that at distances beyond 64 km the peak ground motions are due to strong postcritical reflections from velocity gradients in the lower crust. The principal shear-wave arrivals and the variation of their peak amplitudes with distance were reproduced in synthetic seismograms generated using a regional crustal structure model. The critical distances for the postcritical reflections were short because of the deep focal depth of the event, causing the elevation of ground motion amplitudes out to 120 km. Similar studies of earthquakes in other regions of eastern North America indicate that the strength of the postcritical reflections, and the distance ranges over which they are dominant, are controlled by the focal depth and crustal structure. Regional variations in crustal structure thus give rise to predictable regional variations in strong ground motion attenuation

    Low HDL Cholesterol is Associated with Lower Gray Matter Volume in Cognitively Healthy Adults

    Get PDF
    Dyslipidemia is common in adults and contributes to high rates of cardiovascular disease and may be linked to subsequent neurodegenerative and neurovascular diseases. This study examined whether lower brain volumes and cognition associated with dyslipidemia could be observed in cognitively healthy adults, and whether apolipoprotein E (APOE) genotype or family history of Alzheimer's disease (FHAD) alters this effect. T1-weighted magnetic resonance imaging was used to examine regional brain gray matter (GM) and white matter (WM) in 183 individuals (58.4 ± 8.0 years) using voxel-based morphometry. A non-parametric multiple linear regression model was used to assess the effect of high-density lipoprotein (HDL) and non-HDL cholesterol, APOE, and FHAD on regional GM and WM volume. A post hoc analysis was used to assess whether any significant correlations found within the volumetric analysis had an effect on cognition. HDL was positively correlated with GM volume in the bilateral temporal poles, middle temporal gyri, temporo-occipital gyri, and left superior temporal gyrus and parahippocampal region. This effect was independent of APOE and FHAD. A significant association between HDL and the Brief Visuospatial Memory Test was found. Additionally, GM volume within the right middle temporal gyrus, the region most affected by HDL, was significantly associated with the Controlled Oral Word Association Test and the Center for Epidemiological Studies Depression Scale. These findings suggest that adults with decreased levels of HDL cholesterol may be experiencing cognitive changes and GM reductions in regions associated with neurodegenerative disease and therefore, may be at greater risk for future cognitive decline

    Standalone vertex ïŹnding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ Îł, H → Z Z∗ →4l and H →W W∗ →lÎœlÎœ. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined ïŹts probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson

    Measurement of the top quark pair cross section with ATLAS in pp collisions at √s=7 TeV using final states with an electron or a muon and a hadronically decaying τ lepton

    Get PDF
    A measurement of the cross section of top quark pair production in proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 7 TeV is reported. The data sample used corresponds to an integrated luminosity of 2.05 fb -1. Events with an isolated electron or muon and a τ lepton decaying hadronically are used. In addition, a large missing transverse momentum and two or more energetic jets are required. At least one of the jets must be identified as originating from a b quark. The measured cross section, σtt-=186±13(stat.)±20(syst.)±7(lumi.) pb, is in good agreement with the Standard Model prediction
    • 

    corecore